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Abstract 

 Hyperspectral imaging technique plays an essential role in agricultural production. This article analyzed 

the research progress of hyperspectral imaging technique at home and abroad and summarized the development 

status of hyperspectral technique in precision agriculture, crop disaster detection, and crop growth status. For 

example, hyperspectraltechnique can measure the content of trace elements such as nitrogen, phosphorus and 

potassium in the soil, and determine the crop growth stage according to the leaf area index (LAI) and the crop 

nitrogen content. Hyper-spectrum could tell whether a crop was affected by disasterand the degree of impact. 

The present study also outlined the problems that hyperspectral imaging technique faced with agriculture, 

namely complicated spectral data, relatively easily interfered by external environment, and inaccurate image 
interpretation, providing a reference for the application of hyperspectral remote sensing in agriculture. 

 

 Hyperspectral remote sensing is an image data technique for obtaining digital images in many 

narrow bands across the visible, near-infrared (NIR), mid-infrared (MIR) and thermal infrared (TIR) 

regions of the electromagnetic spectrum (Yao et al. 2008, Du et al. 2016). It has outstanding features 

of multiple spectra, high resolution and the “consistency between images and spectra” (Teng et al. 

2009). With the development of hyperspectral technology, its application has expanded to a variety 

of fields, especially in agriculture. Hyper-spectrum could be used to calculate the organic matter 

content of different types of soil, determine the nutrient content in crops, monitor the growth of 

crops, estimate the crop yield, and investigate the impact of pests and diseases on crops (Pang et al. 

2012), so that timely response measures could be taken to increase the crop yield and promote the 

sustainable development of agriculture (Du et al. 2016). In the present study the applications of 

hyperspectral remote sensing in precision agriculture, agricultural disasters and crop growth, 

providing references for the future development of hyperspectral imaging technique in agriculture 

were reviewed.  

 Hyperspectral imaging technique is a potential soil attribute mapping tool that can invert SOM 

content (Gomez et al. 2016), helping to assess soil quality in real time and serve precision 

agriculture (Rajeev et al. 2015). Combined with classification and regression tree or multivariate 

statistical analysis methods, hyper-spectrum can be used to identify mineral composition, organic 

matter content and moisture (water) content of soil, and estimate the concentrations of nitrogen, 

carbon, carbonate and organic matter in soil (Gmur et al. 2012). Studies have shown that different 

soil types have distinct spectral curves. The spectral curve features of different farmland soil types 

in Northeast China measured by hyper-spectrum exhibited different reflectance for different soil 

types. With respect to the black soil, the response of organic matter content was more significant at 

400-1000 nm than that at 1100-2500 nm, and some scholars have further narrowed the most 

significant range  down  to 400-750 nm (Yang et al. 2013, Liu et al. 2014). Hyperspectral  imaging 
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technique could remotely estimate the leaf chlorophyll content, and further perform nutrient 

diagnosis and crop yield evaluation (Chi et al. 2016). Chlorophyll fluorescence is correlated to 

photosynthesis, therefore, there is a certain relationship between plant leaves and net photosynthetic 

rate (Zarco-Tejada et al. 2013). Hyperspectral imaging technique could perform non-destructive 

detection of nitrogen content in plant leaves (Tian et al. 2011). Combined with regression analysis it 

may assess the nitrogen content, accurately collecting nitrogen content information of plant leaves 

(Cilia et al. 2014, Wang et al. 2017). Taking advantages of the neural network model, it could 

estimate the nitrogen content at various stages of corn growth. Investigation showed that the 

nitrogen content had greatest impact on corn growth (Liang et al. 2010).  

 Hyperspectral imaging technique may generate distinct spectral curves of plants during various 

growing seasons. Taking the Saskatchewan test field in Canada as the study area, leaf area indexes 

(LAIs) were measured for barley, wheat and rapeseed, during the early growing season (June), the 

vigorous growing season (July), and the late growing season (August), respectively. Firstly, a plant 

canopy analyzer was used to measure the LAI, and an ADS portable hyperspectral instrument was 

used to fetch remote sensing data. The variance analysis based on normalized vegetation index 

(NDVI) was used to obtain the significant differences. Byimage analysis, it can be seen that during 

the early growing season, photosynthesis was strong, the plants were at jointing stage, and the 

distribution of the plant spectral curves was similar to those of the barren lands. In the vigorous 

growing season, the chlorophyll only took a small amount of absorption and the plant spectra 

displayed a typical vegetation spectral curve distribution (Fig. 1). During the late growing season, 

the spectra curves in the visible and NIR regions were relatively smooth due to the harvest of wheat 

and barley (Zheng et al. 2007). It was found that during wheat germination the spectral curve 

exhibited a significant absorption valley at 675 nm, while no such phenomenon existed for 

non-germinated wheats, indicating that wheat could be clearly detectable at 675 nm (Wu et al. 2012). 

Hyper-spectrum could be manipulated to indirectly study the crop growth stages by monitoring the 

amount of irrigation water required during the growth (Sudipta et al. 2013). The information bands 

and their combinations based on hyperspectral remote sensing technology could be assembled to 

extract the spatial information of crop growth and perform growth monitoring of rice (Li et al.2006). 

The above-ground biomass in canopy of crops changes at various growing seasons, hence, the 

growth stage of rice could be determined indirectly by measuring the above-ground canopy biomass 

with hyper-spectrum (Martinet al.2014). Hyper-spectrum was also used to explore the crop growth 

in the polar regions. The biomass measurements in the polar regions showed significantly different 

biomass-spectra relationships in the early growing season (Sara et al.2017). Hyper-spectrum may 

detect crop growth, implement crop management, improve crop quality, and make production more 

scientific. 

 Hyperspectral imaging technique is one of the important technical means for pest and disease 

detection. Hyperspectral data could be used to prove the spectral changes of crops during pest and 

disease invasions, explore the severity of damage, and determine the sensitive bands and sensitive 

periods for crops affected by pests and diseases. The relationship between crop hyperspectral 

reflectance and pest and disease invasion could be learnt by comparing the crop hyperspectral 

curves in the background of crop growth (Hamed et al. 2005). The spectra of leaves and trunksof 

trees varied when affected by pests and diseases (Zhang et al. 2017). Therefore, the damage degree 

of forest pests and diseases can be detected by hyperspectral remote sensing (e.g. DNVI, RVI). 

Further, combined with first derivative and data dimensionality analysis, it was concluded that the 

most significant band to study forest pests and diseases was 759nm (Pan et al. 2014). 

Hyper-spectrum was also used to detect the degree of late blight infection in California tomatoes in 

the United States. The results demonstrated that hyperspectral technique could effectively manage 

crop pests and diseases, indicating that the hyperspectral-based classification method served well 
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for crop disease identification (Zhang et al. 2003). The impact of pests and diseases in tea was 

detected with hyperspectral technique. Further by first-order differential derivative conversion, it 

was found that the regions of 715 - 763 nm and 776 - 778 nm worked best to tell the impact of pests 

and diseases on tea (Liu et al. 2016). Hyper-spectrum has been used to detect the effects of pests and 

diseases on various vegetations. The spectral bands for inversion of different vegetations affected by 

pests and diseases are different, and the corresponding analysis model varies as well. 

 

 
 

Fig. 1. Radiate transfer of light within a blade: (I0) total energy incident on the blade surface; (ID) energy that 
passes through the surface of a blade and into the interior of the blade; (IR_Sur) energy directly reflected; 
(IA) energy absorbed inside the blade; (IR_In) energy that enters the blade and is scattered multiple times 
and reflected back; (IT) energy that is scattered many times and passes through the blade. 

 

 The advantages of high resolution and abundant information of hyper-spectrum equip it with a 

broad application prospect in agricultural pest monitoring. It was shown that hyper-spectrum can 

clearly identify whether cotton was affected by freezing, however, it cannot determine the degree of 

freezing injury (Li et al. 2008). Together with first derivative, second derivative, and reciprocal 

logarithm, hyperspectral imaging technique was employed to obtain the sensitive bands of 

identifying the effects of freeze damage to winter wheat (Li et al. 2014). The sensitive bands were 

578.37, 571.93 and 684.92 nm, among which the band of 684.92nm gave the most accurate results. 

In addition, the principal component analysis method was applied to establish a hyperspectral 

inversion model of the severity of winter wheat freeze injury, and it has been verified (Wang et al. 

2014). Besides the detection of freeze damage to crops, hyper-spectrum was applied to droughts and 

floods of crops as well. Hyper-spectrum was used to determine whether maize was affected by flood 

during the jointing stage and measure the degree of impact. Studies have shown that the maize was 

affected by flood at jointing, and the severer the flood, the smaller the chlorophyll content in maize, 

which also dropped sharply with the increase of flood time (Meng et al. 2017). It was found that beet 

and maize followed this rule at various growth stages (Jiang et al. 2013). 

 The application of hyper-spectrum in agricultural production estimation focuses on two areas, 

crop type identification and area extraction, and crop growth detection and yield estimation. The 

crop leaves may be effectively identified in the NIR region. The internal structures of leaves are 

different regarding different crops. Hyper-spectrum is capable of detecting internal structures, 
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therefore it could be used to identify different crops accurately. Based on this, combined with 

MODIS data and Back propagation (BP) neural network model, it could be used to estimate the crop 

yield (Table 1). A cotton yield estimation model based on canopy spectral index measured by 

hyperspectral imaging technique was established, and the spectrum and yield of cotton from the 

germination peak period to the late bloom period were analyzed by spectral reflectance (Zhuang       

et al. 2011). Hyper-spectrum was used to estimate the winter wheat yield too. As shown in studies, 

the spectral reflectance was negatively correlated with yield in the visible, NIR and shortwave 

infrared (SWIR) regions, and the NDVI and yield defined in the NIR region were extremely 

significant (Zhang et al. 2014). 
 

Table 1. Agricultural directional remote sensing demand. 

Target Spectrum requirements Suitable satellite data 

Optimum 

harvest time 

Hyperspectral, multispectral, visible-near 

infrared 

Proba Chris, Hyperion, Landsat TM, 

Quickbird; MODIS, ASTER, etc. 

Yield Hyperspectral, multispectral, visible-near 

infrared 

Proba Chris, Hyperion, Landsat 

TM,GF-5, IKONOS, CBERS, etc. 

Quality Hyperspectral, multispectral, optical, thermal 

infrared 

Proba Chris, Hyperion, Landsat TM, 

Quickbird, ASTER, etc. 
 

 There are many spectral bands in hyper-spectrum, such as visible, near infrared, mid-infrared 

and thermal infrared. It can be used to identify crop types and is useful for the agricultural product 

yield estimation and the optimal band determination. Classification of wheat varieties with 

hyperspectra demonstrated that the NIR spectroscopic information could reflect the differences 

among varieties, while different parts of crops may affect the crop classification results. Studies 

showed that it is achievable to distinguish some crops by hyper-spectrum. Easily the crops could be 

distinguished by their different spectral curves and absorption bands. However, it is hard to tell apart 

crops with similar spectral absorption bands (Dong et al. 2015). The spectral reflection and 

absorption analysis revealed major spectral characteristic bands in the visible to NIR regions, 

including the green peak at 510 - 560 nm, the red valley at 650 - 690 nm, the red edge at 680-760 nm, 

the chlorophyll absorption band in the blue light region of 400 - 530 nm and in the red light region of 

500 - 730 nm, weak water absorption band at 930-1000nm, narrow water and oxygen absorption 

band at 1100 -1250 nm.  

 The application of hyperspectral imaging technique in agriculture has made some progress, but 

it still has a long way from maturity (Shi et al. 2015). The impact of surrounding environments such 

as weather on hyper-spectrumim pairs the accuracy of the prediction model. Besides, the 

information interference of surrounding objects complicates the spectral data, making data 

processing cumbersome and setting high technique requirement (Yan et al. 2019). In addition, the 

large amount of collected images is a burden for data storage (Cheng et al. 2001). Moreover, the 

measured crop itself has a complex metabolic regulation mechanism, which may cause deficiency 

of some elements and excessive of other elements, resulting in inaccurate measurement of plant 

spectral curve, which leads to errors in image interpretation.  

 With the development of hyperspectral technology, the integration of theory and practice 

should be improved to enhance the ability to transfer experimental results into actual productivity 

(Hong et al. 2010). It is of great benefit to accelerate the establishment of agronomic hyperspectral 

database, improve the mining power and application efficiency of hyperspectral data, and combine 

3S technology to analyze agricultural information in a timely fashion. Though the application of 

hyperspectral imaging technique in agriculture is more precise and accurate than the previous 

multi-spectral technique, it still needs further improvement in agricultural yield estimation, crop 
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growth detection, and crop damage investigation. Agriculture is heading for conservation tillage and 

sustainable agricultural development in China. Conservation tillage has the superiority of reducing 

air pollution, increasing crop yield, and promoting sustainable agricultural development. 

Hyperspectral imaging technique can accurately measure the nutrient contents of crops, crop growth, 

and the implementation of conservation tillage. 
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